您好,欢迎来到陕西新诚硕精密光电仪器有限公司!

陕西新诚硕精密光电仪器有限公司
联系人:张总
电话:180-6683-1809
手机:180-6683-1809
E-mail:1154684289@qq.com
地址:陕西省西安市新城区万年路10号力天商务中心四楼431室
网址:www.xcsgd.com
您当前的位置是:网站首页>新闻中心>行业新闻>正文内容

行业新闻

计算光学成像将如何推动技术变革?

发布时间:2023-01-30 952人看过

      光是人类感知世界的信息载体,也是人类的希望。
 
      早在远古时代,古埃及人与美索不达米亚人第一次将石英晶体磨光制成宁路德透镜(Nimrud lens),翻开了人类光学成像历史的第一页,距今已3000多年的历史。
 
      过去十多年来,随着微纳加工工艺的快速进步、光传感器(芯片)的多功能化、信息计算能力提升等新一代技术的不断演进,一个新兴多学科交叉技术“计算光学成像”应运而生,悄无声息中颠覆了人类与机器感知世界的方式。
 
      计算光学成像以具体应用任务为准则,改变传统光学成像所见即所得的设计理念,通过多维度获取或编码光场信息(如角度、偏振、相位等),为传感器设计远超人眼的感知新范式,同时结合数学和信号处理知识,深度挖掘光场信息,在空间分辨率、成像速度、灵敏度、数据通量等一系列维度取得了前所未有的突破,广泛应用于手机智能摄影、汽车自动驾驶、生物医学成像、深空探测、VR/AR等领域。
 
      2014年和2017年诺贝尔化学奖中,瑞典皇家科学院授予了美国、德国、瑞士、英国共六位科学家,分别表彰他们为发展超分辨率荧光显微镜、冷冻电镜技术所作的贡献,让人类得以细窥纳米世界。“计算光学成像”的理念在其中承担着重要作用。
 
      今年1月11日,阿里达摩院2023十大科技趋势发布,计算光学成像、生成式AI(人工智能)、存算一体等技术成功入选。更早之前的12月下旬,彭博发布的一篇Opinion文章中提到,计算光学成像中的“元光学”(Meta-Optics)技术有望在今年引起广泛关注,并在未来十年内产生变革。
 
      实际上,相比其他大众认知性较强的技术领域,由于计算光学成像太专业化了,因此技术较“冷门”,很少有媒体关注到,但却已经在潜移默化中应用在几乎日常生活中涉及光学的方方面面。而且该技术对于人类触及“见所未见”事物过程非常重要,大大提升了信息获取能力,突破传统光学成像极限,带来很多更具创造力和想象力的应用,促进了基础学科和应用学科发展,有望进一步颠覆传统成像体系。
 
      1月中旬,2022第五届“达摩院青橙奖”获得者、清华大学自动化系助理教授吴嘉敏接受了钛媒体App的独家专访。作为达摩院十大科技趋势项目特邀专家,吴嘉敏非常详尽地向我们介绍和阐述“计算光学成像”为何会成为2023年趋势性技术,以及该技术未来将如何推动技术发展与变革。
 
      “借你一双慧眼”的冷门技术
 
      2022年7月11日,在长达20年的开发、100亿美元的高昂投入和150万公里的太空艰险旅行之后,美国宇航局(NASA)发布了旗下詹姆斯·韦伯太空望远镜(JWST)拍摄到的非常珍贵的第一张全彩图像,展示了从地球上看到的一些最遥远星系的深空区,凸显了JWST惊人的观测能力。
 
      这一事件入选了2022《Science》(科学)杂志年度十大科学突破。
      
      詹姆斯·韦伯太空望远镜在各个方面几乎都达到了人类在传统光学工艺上的极限,“计算光学成像”技术有望在未来带来新的突破,拓展人类对宇宙的认知边界,同时极大地降低成本。
 
      光学成像系统主要由光源、光学镜头组、光探测器三部分组成。其中,传统光学成像建立在几何光学基础上,利用光学镜头将三维场景目标发出或者透/反/散射的光线聚焦在表面上,探测器像素和样品之间通过建立一种直接的一一对应关系来获取图像,图像的强度由光探测器离散采集,并经过图像处理器计算处理后形成可显示的图像。
 
      不过,传统光学成像这类基于人类视网膜“所见即所得”的技术原理,忽略了诸多光本身的高维信息,导致其受强度成像机理、探测器技术水平、光学系统设计、成像衍射极限等等因素的限制,以及单视角、相位丢失、光谱积分、二维平面成像等因素的制约。
 
      此外,当前传统光学成像在硬件功能、成像性能方面接近物理极限,在众多领域已无法满足应用需求。例如,在手机摄影领域,无法在保证成像效果的同时缩小器件重量和体积,出现令人诟病的“前刘海”和“后浴霸”的情况;在显微成像领域,无法同时满足宽视场和高分辨率的需求;在监控遥感领域,难以在光线较暗、能见度较低、距离极远的复杂环境中获得清晰图像等。
 
      那么,突破“所见即所得”的一一映射,到对高维光场的耦合编码与计算重构,克服常规成像的局限性,以更低的成本获得更多更高质量的高维信息(诸如深度、光谱、偏振等等),是计算光学成像——“借你一双慧眼”能够出现的重要原因。
 
      1873年,德国科学家恩斯特·阿贝(Ernst Abbe)提出了基于波动光学的衍射极限。即光学系统的分辨率存在上限。在很长一段时间里,衍射极限限制了高分辨率成像。随后,多位科学家利用计算成像技术,巧妙地通过波前编码技术或时域稀疏特性,绕过了光学衍射极限,实现了在活细胞内的纳米级观测,并获得了2014年的诺贝尔化学奖。
 
      2016年,基于超表面的概念,哈佛大学的科学家Federico Capasso研制了首个在可见光范围内有效聚焦的超透镜(Metalens),开辟了平面光学(Flat Optics)领域,能够实现对复杂光场的超精细调制,有望极大地缩小成像系统的尺寸与成本。
 
      2022年10月,英国《自然》杂志发表了吴嘉敏助理教授担任第一作者的研究成果,研究团队提出了一种集成式的扫描光场成像传感器,称为元成像传感器,进一步发展了数字自适应光学架构,无需额外的硬件修改即可实现适用于通用应用的高速像差校正三维摄影。
 
      这些研究成果背后,是计算光学成像技术带来的巨大应用实践。
 
      吴嘉敏对钛媒体App表示,相比传统光学成像,计算光学成像是将数字化、信息化深度融合在光学设计里面,软硬件一体化,通过计算为光学成像注入了新的“生命”。
 
      “从理念上来说,传统光学成像最核心的设计理念是‘人眼在设计’,我们把Sensor(传感器)当作人眼来设计的光学系统。而计算光学最重要、最核心的是改变了这样一个设计,是让机器更好地感知这个世界;从原理上来说,把数字化融入到光学成像过程当中,在感知成像的过程中就开始进行计算编码,数字化建模整个成像过程,在光电转换以后再通过计算重构恢复想要获得的高维信息,甚至可以选择去完成特定的智能任务,比如图像分类,人脸识别。把计算与成像过程完全融合在一起。”吴嘉敏表示,计算光学成像的核心作用,是能够解决很多普通光学无法处理的瓶颈和难题。
 
      由于计算光学成像研究内容覆盖范围广,包括无透镜成像 (FlatCam)、元光学成像等,目前还没有一个比较明确的分类方法。按照计算成像技术所解决的应用问题来分类,可以大致分为以下三类:
 
      功能提升:对传统方式无法获取的光学信息,如光场、偏振、相干度等进行成像或测量;
 
      性能提升:即提升现有成像技术的性能指标,如空间分辨率、时间分辨率、景深、复杂环境鲁棒性等;
 
      简化与智能化:通过单像素、无透镜等特定技术简化成像系统,或者以光速实现特定人工智能任务。

公司地址

陕西省西安市新城区万年路10号力天商务中心四楼431室

联系方式

免费服务热线:180-6683-1809 电子邮箱:1154684289@qq.com

扫码关注微信

扫码浏览手机站

Copyright © 陕西新诚硕精密光电仪器有限公司 All Rights Reserved. ICP备案号:陕ICP备2021015419号   技术支持:网络推广